Research

Journals
  1. Ponce Campuzano, J. C., Roberts, A. P., Kenny, E. P., Wegener, M. J., McIntyre, T. J. & Matthews, K. (On Press). Dynamic visualisation of line integrals of vector fields: a didactic proposal. International Journal of Mathematical Education in Science and Technology.
  2. Gordillo-Thiriat, W., Pino-Fan, L., Font, V. & Ponce Campuzano, J. C. (2018). Some tasks to evaluate the understanding of the mathematical object antiderivative (Algunas tareas para evaluar la comprensión sobre el objeto matemático antiderivada). Revista Academia & Virtualidad 11(2): pxx-xx. revistas.unimilitar.edu.co
  3. Ponce Campuzano, J. C. & Matthews, K., Adams, P. (2018). On the use of history of mathematics: an introduction to Galileo’s study of free fall motion. International Journal of Mathematical Education in Science and Technology. 49: 4, 517-529. doi.org/10.1080/0020739X.2017.1377301
  4. Ponce Campuzano, J. C. & Maldonado-Aguilar. M. A. (2015). Vito Volterra’s construction of a nonconstant function with a bounded, non-Riemann integrable derivative. BSHM Bulletin: Journal of the British Society for the History of Mathematics. 30: 2, pp. 143-152. doi.org/10.1080/17498430.2015.1010771
  5. Ponce Campuzano, J. C. & Maldonado-Aguilar. M. A. (2014). The fundamental theorem of calculus within a geometric context based on Barrow’s work. International Journal of Mathematical Education in Science and Technology. 45: 2, pp. 293-303. doi.org/10.1080/0020739X.2013.822586
  6. Ponce Campuzano, J. C. (2013) Developing prospective mathematics teachers in Mexico: A lesson on the relationship between integration and differentiation. International Journal of Mathematical Education in Science and Technology. 44: 7, pp. 996-1006. doi.org/10.1080/0020739X.2013.826386
  7. Ponce Campuzano, J. C. (2013) Sulle funzioni derivate e le condizioni di esistenza di primitive. [On the derivative functions and the conditions of existence for primitives]. L’insegnamento della matematica e delle scienze integrate. Vol. 36, No. 2-B, pp. 167-180. www.centromorin.it
  8. Ponce Campuzano, J. C. (2013). Isaac Barrow y su versión geométrica del Teorema Fundamental del Cálculo. [Isaac Barrow and his geometric version of the fundamental theorem of calculus]. Números Didáctica de las matemáticas. Vol. 83. pp. 123-130. www.sinewton.org
  9. Rivera-Figueroa, A. & Ponce Campuzano, J. C. (2013). Derivative, maxima and minima in a graphical context. International Journal of Mathematical Education in Science and Technology. Vol. 44, 2, pp. 284-299. doi.org/10.1080/0020739X.2012.690896
  10. Ponce Campuzano, J. C. & Rivera Figueroa, A. (2011). Un análisis del uso de la tecnología para el cálculo de primitivas. [An analysis of the use of technology for calculating primitives]. Números Didáctica de las matemáticas. Vol. 77. 2:B, pp. 85-98. www.sinewton.org
  11. Ponce Campuzano, J. C. & Rivera-Figueroa, A. (2011). A discussion on the substitution method for trigonometric rational functions. Mathematics and Computer Education. Vol. 45 (1). pp. 44-51. https://www.researchgate.net/profile/Juan_Ponce_Campuzano
  12. Ponce Campuzano, J. C. & Rivera-Figueroa, A. (2011). Unexpected results using computer algebraic systems for computing antiderivatives. Far East Journal of Mathematics Education. Vol. 5 Number 1. pp. 57-80. www.pphmj.com/journals/articles/801.htm
  13. Ponce Campuzano, J. C. & Rivera, A. (2009). Casos en los que no es aplicable la fórmula $\int_a^b f (x)dx = F(b) -F(a)$ [Cases where we can not apply the formula $\int_a^b f (x)dx = F(b) - F(a)$]. Miscelánea Matemática, 48 pp. 59-74. www.miscelaneamatematica.org
Textbook
  1. Espinosa, H., Ponce Campuzano, J. C. & Reyes, A. (2011) Matemáticas 1. Serie Encuentro [Mathematics 1. Encounter Series]. 2nd ed. México: SM de Ediciones. ISBN: 978-607-471-874-4.
Proceedings
  1. Wegener, M.J., Kenny, E., Ponce Campuzano, J. C., Roberts, A.P., Matthews, K. & McIntyre, T.J. (2017). Using interactive simulations to enhance student engagement in mathematics and physics. In Rowland, S. editor. Proceedings of the Australian Conference on Science and Mathematics Education, Melbourne, Australia. 28-29 September 2017. pp. 103-104.
  2. McIntyre, T. J., Wegener, M. J., Roberts, A. P., Kenny, E. P., Ponce Campuzano, J. C. & Matthews, K. (2016). Active learning using interactive simulations. Paper presented at: 13th Asia-Pacific Physics Conference in conjunction with the 22nd Australian Institute of Physics Congress, Brisbane, Australia. 4-9 December 2016.
  3. McIntyre, T. J., Roberts, A. P., Wegener, M. J., Ponce Campuzano, J. C., Kenny, E. P. & Matthews, K. (2016). Dynamic, interactive simulations for enhancing student learning. In Overton, T. & Yeung, A. editors: Australian Conference on Science and Mathematics Education, Brisbane, Australia. 28-29 September 2016. pp. 92-93.
  4. Ponce Campuzano, J. C. & Rivera-Figueroa, A. (2011). Using Computer Algebraic Systems to compute antiderivatives: Showing some mathematical facts that should not be neglected. In J. Hannah & M. Thomas. (eds.) 8th Southern Right Delta Conference on the Teaching and Learning of Undergraduate Mathematics and Statistics. Rotorua, New Zealand. pp. 206-215.
  5. Ponce Campuzano, J. C. & Rivera-Figueroa, A. (2009). Reflections on the method for computing primitives: $u = \tan(x/2)$. In D. Wessels (Ed.) Proceedings of the 7th Southern Right Delta Conference on the Teaching and Learning of Undergraduate Mathematics and Statistics. Gordon’s Bay, South Africa. pp. 206-215.
  6. Figueras, O., Guerrero, C., Ponce Campuzano J. C., Real, R., Sánchez, M. & Flores, P. (2008). An Investigation of Classroom Practice within a Professional Development Study Programme. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepúlveda. (eds.). Proceedings of the Joint Meeting of PME 32 and PME-NA XXX. Vol. 1. Mexico: Cinvestav-UMSNH. p. 256.
  7. Ponce Campuzano J. C. (2006). La argumentación y enseñanza del Teorema Fundamental del Cálculo en Profesores de Matemáticas. [The argumentation and teaching of the Fundamental Theorem of Calculus in teachers of mathematics]. In C. Rita. (ed.) Acta Latinoamericana de Matemática Educativa. Vol. 20. pp. 79-83.